
i

Bachelor of Technology
Information Technology Project

Data Integration

Shawn D'souza

sdso010@aucklanduni.ac.nz

University of Auckland

October 2012

ii

Abstract
Data integration is a pervasive challenge faced in applications that need to query across multiple

autonomous and heterogeneous data sources. My project for BTech this year is to design an interface

that will allow users of the application to query and import data from various data sources. In this

report I will describe my project, I will explore possible solutions to solve data integration issue and

explain why my proposed solution is apt for this project.

iii

Acknowledgements

I would thank Dr S. Manoharan for giving the opportunity to go ahead with this project. Aslo I would

like to thank my Industrial mentor Frederik Dinkelaker for guidance and mentoring in developing the

solution. I would also like to thank my academic supervisor, Dr. Xinfeng Ye for supporting with the

research of my project. I would also like to thank the development team at torque for their support

throughout the development process.

iv

Contents

Data Integration ..i

Abstract... ii

Acknowledgements .. iii

Introduction ... 1

Project Description .. 1

Company Information .. 1

Problem Background .. 1

Project Motivation ... 2

Project Goal .. 3

The project ... 3

Project Specifications .. 3

Project Research .. 4

Live Data Reporting Strategy ... 4

Advantages: .. 4

Disadvantages: ... 5

Data warehouse strategy ... 5

Advantages ... 5

Disadvantages: ... 5

Approaches to Integration .. 6

Manual Integration .. 7

Common User Interface ... 7

Integration by Applications .. 7

Integration by Middleware ... 7

Uniform Data Access ... 8

Common Data Storage .. 8

Requirements for the data integration ... 9

Challenges for the data integration .. 10

Data Integration Patterns ... 10

Integration patterns ... 10

Overnight Data Integration patterns .. 11

Which Pattern Should I Use? .. 11

Data Integration Paradigms (ETL and ELT).. 12

Processing steps in ETL data flow .. 12

Advantages for ETL data flow ... 12

Disadvantages for ETL data flow .. 13

Processing steps in the ELT data flow .. 14

Advantages of ELT Data Flow ... 14

v

Disadvantages of ELT Data Flow .. 15

Which Should I Use for My Implementation? .. 16

Use ETL when… .. 16

Use ELT when… .. 16

Development Plan ... 16

Extracting the Data ... 16

1. Ad-hoc Web Service .. 17

2. Using Data Dump .. 18

Import Interface Design .. 19

Design & Implement the Visual Interface ... 19

Use Case 1: Creating and Editing Sales / Finance Entries .. 19

Technologies .. 21

MVC ... 21

MVVM ... 21

ORM .. 22

Repositories .. 23

JQuery ... 24

Service Locator ... Error! Bookmark not defined.

Implementation ... 24

Project Structure .. 24

Domain Model ... 25

External Import Data Source ... 25

UI service class ... 27

Displaying the Data .. 28

Input Validation ... 28

Outcome ... 29

Future Work ... 30

Achievements ... 31

Documentation .. 31

Source control .. Error! Bookmark not defined.

Design Patterns .. Error! Bookmark not defined.

Conclusion .. 32

Work Done ... 33

Bibliography ... 34

vi

List of Figures

Figure 1: Torque ITS Logo .. 1

Figure 2: General Integration Approaches on Different Architectural Levels .. 7

Figure 3: The role of data integration in a data warehouse project .. 9

Figure 4: Positions the different integration options that are available. ... 10

Figure 5: Simple ETL data flow ... 12

Figure 6: SSIS data flow example ... 13

Figure 7: Simple ELT data flow ... 14

Figure 8: SSIS control flow ELT process .. 15

Figure 9: DPMS Data Integration Architecture .. 18

Figure 10: Import Interface: First two mock screens .. 19

Figure 11: Import Interface design screens ... 20

Figure 12: Snippet of Import Repository .. 23

Figure 13: Skeleton LogEntry Domain Model... 25

Figure 14: External Import source table structure .. 26

Figure 15: Common Interface to access the Import sources .. 26

Figure 17: Import search form .. 29

Figure 18: Import search results screen .. 30

1

Introduction

Integration of application and business processes is a top priority for many enterprises today.

Very few business applications are being developed or deployed without a major focus on

integration, essentially making integratability a defining quality of enterprise applications (Hophe,

2002). For my project I will a add feature to the existing application to integrate data from other

source into the application. In this report I will talk about what technique companies can use to

integrate data from multiple sources. How information from multiple data sources can be

queried. And what is the most efficient way of doing it.

Project Description

Company Information

The company I have chosen to work with for my BTech project is Torque IT Solutions. It is a start-

up company that began in September 2011. Torque I.T.S is a finance company that primarily

focuses on enabling car dealerships make the most profit from their business transactions, by

providing them with the technical tools required to monitor and audit sales transactions in the

company. The company has many software applications under development, and will be working

on one of the applications, namely DPMS (Dealer performance management system). The

application allows the Car dealer managers to manage the sales made

within in the dealership, by allowing the staff to input transactional data

into the system.

Figure 1: Torque ITS Logo

Problem Background

2

The Dealer Performance Management System is an application designed to allow mangers of car

dealerships to identify their profit potential. This is done by allowing the business manager of the

car dealership to monitor the car sales and services. This is done by the staff at dealership (may it

be sales personal or finance mangers) to input their sales details into the application. The car

dealership companies have their own point of sale and vehicle databases in which they store the

information pertaining to the sales transactions and vehicle details. DPMS allows the business

manager of a car dealership to monitor those sales made by the sale persons, finance managers,

and aftersales staff. Before the business manager can make use of DPMS, he or the staff first

need to enter the data into the system. This re-entry of data from the POS system is a major

draw-back of DPMS. To resolve this issue, the application needs to be able to extract/ import the

information from other information systems such as POS. For my project I will need design an

application that will allow the user of DPMS to integrate the data from their Point of Sales

system. Also users of the system might also want to include data from there on site vehicle

database, or query vehicle information from the vehicle transport database. The application

needs to be flexible and uniform so that data from any number for data sources can be queried

and data can be imported with minimal code change.

Project Motivation

The purpose of the project is to reuse the existing data from external systems, as to reduce the

time for data entry and eliminate human error. Allowing the option of user import their existing

data into the system will make the application compatible with existing greatly increase the

appeal of the system and increase the sales more car dealerships to buy the DMPS product.

Having the form fields auto-populated from the data bases will eliminate any human error that

could occur.

3

Project Goal

The goal of the project is to provide a uniform query interface to a multitude of data sources,

thereby freeing the casual user from having to locate data sources, interact with each one in

isolation and manually combine the results.

The project

I have been given the possible ways the data could be extracted. The data that needs to be

imported into the system can come from several data sources and formats. It is up to me how I

design the interface to allow for the flexibility to import any data source in a consistent format.

However the data sources can be split into major categories based on the frequency of data

updates. The first type of data source contains data that changes frequently (i.e. every hour); this

data is stored on the point of sale system. The DPMS application needs to be able to query these

changes as soon as they have been made. The second category is data whose value if changed

will not affect the overall outcome the application. This data is not mission critical and doesn‘t

need to be updated constantly

Project Specifications

An application need to be developed that will allow Users choose which databases, and

applications to search the data from. The User of the system must be able to query all these data

sources and obtain the results in a consistent format so that the data can be imported into the

DMPS application.

Specifications

 Users must be given the choice for which external data source they want to pull data

from

 Users must be able to import parts of a log entry (or specific columns of data), from any

data source they desire.

 The web service will provide you with a number of methods you can call. The search

parameters offered will be known.

 Each data source will offer different parameters

 The search parameter will be run over multiple data sources; some of the sources will not

have the same parameters for the search.

 List of alternatives should appear in case of multiple results (i.e. two existing quotes in

POS for same vehicle).

4

Project Research

Data Integration universal challenge faced in applications that needs to query across multiple

autonomous and heterogeneous data sources. Today‘s reality is that a large percentage of a data

warehouse‘s total cost of ownership (TCO) is related to post development integration costs—that

is, the on-going costs of loading source data into the data warehouse and distributing data from

the data warehouse to downstream data stores. In the IT industry we are often presented with

the problem of having data sets ready to be used, and yet being unable to use them. This

happens due to several facts: the coded information does not satisfy some of the actual needs or

the resource format is not appropriate. These situations may lead to incompatibilities between

the data used by two applications that perform the same kind of task, preventing the cross

reusability of those data sets or even their combination to form a richer set of data.

For my project research I have explored possible solutions to the problem described. I will look

what data integration means, what challenges are faced by businesses when they attempt to

integrate data with external systems. I will briefly go through common data integration strategies

and patterns used currently in the IT sector. Finally I will compare and contrast these patterns and

validity to my project.

Before I dive into research on how data can efficiently extracted and transported to an

application, I think it would be worth noting the other option which we can also come across if

we were to own or have access over the counter part application. One reason to extract data and

transport an external application is so that some data analysis can be carried out before the data

is stored.

Live Data Reporting Strategy

The growing need for real-time or near real-time reporting outside of the line of business

database; organizations are increasingly running some data integration processes more

frequently—some close to real time.

With a Live Data strategy, the production POS data is reported on directly rather than reporting

from a target Data Warehouse such as DPMS. Reporting and Business Intelligence software is

used with Report Templates similar to those described in the Data Warehouse Strategy to deliver

information to management when reporting using a Live Data strategy.

Implementing a Live Data strategy for reporting and business intelligence is the best approach

for companies who want to empower people outside IT to develop and distribute reports to

management without the technical skills, resources and budget required to implement and

maintain a Data Warehouse.

Advantages:

 Less costly than a Data import strategy

 Less complicated than a Data import strategy

5

 ―IT Lite‖ with much less reliance on IT resources than a Data import strategy

 Reports run against live production data rather than a Data Warehouse so you know all

data returned in reports is guaranteed to be the most recent data.

 Corporate production data sources in all formats (DB2, SQL Server, Oracle, Access, Excel,

etc.) can be reported against directly rather than transmitted to a Data Warehouse a

required first step of configuring all the transformations to get the data into a Data

Warehouse

 Report development can be performed by people outside IT

 Reports, dashboards, and queries can contain drilldowns and hyperlinks to information in

any module or data sources outside DPMS.

Disadvantages:

 If you purge your production tables often you will have to copy them first if you want to

report historical information with a Live Data strategy

 Report processing is shared with transactional processing on your production POS

database

Data warehouse strategy

With a Data Warehouse strategy, data is extracted, transformed, and loaded into a reporting

database configured as a Data Warehouse including the Static Metadata.

The five main elements of a Data Warehouse strategy are:

1. Your production Point of Sale (POS) database

2. A second database used as your target Data Warehouse

3. ETL software used to Extract Transform and Load data from POS to DPMS

4. Reporting and business intelligence software used to deliver information from your Data

Warehouse to managers throughout your organization

5. Report Templates used to address Dynamic Metadata, calculations and functions not

integrated in a Data Warehouse

Advantages

 Reports run against the Data Warehouse rather than your production database so your

production database can be dedicated to transactional processing rather than reporting

 If you have multiple instances of DPMS or multiple POS‘s you can easily merge data from

these multiple data sources into one target data store for consolidated reporting

 Reporting can be faster than Live Data systems

 Static Metadata is provided in the Data Warehouse

Disadvantages:

 Building or buying pre-built Data Warehouses is more expensive than a Live Data

strategy

 ―IT intensive‖ with heavy reliance on IT support

 Resource intensive to manage, maintain, and provide additional content on an on-going

basis

6

 Dynamic Metadata is not addressed in the Data Warehouse so it will need to be

addressed in another format like a report template or created in reports you develop

 Populating the Data Warehouse with the data necessary to address all possible questions

requires that you identify up front every possible scenario that needs to be addressed so

you are sure the information is stored in the Data Warehouse

 The frequency of data being refreshed in the Data Warehouse may impact reporting. For

instance, while in your month-end close process you post a journal entry and want to run

a financial statement immediately thereafter, you need to ensure that the entry was

refreshed in the Data Warehouse

 Requires additional database software to store data and ETL software to populate your

Data Warehouse

 Reporting and business intelligence software needs to be implemented on top of the

Data Warehouse

 When data is extracted from your production database it competes with transactional

processing

 Because of this complexity the failure rate for Data Warehouse implementations is over

50%. (Gartner)

As you can see the pros of live reporting outweigh the cons, since with this project I don‘t have

the option of implementing the preferred live reporting approach, I have will implement the data

warehouse strategy. A key component in most data warehouse project is data integration. In fact,

75% of the initial Data Warehouse project commonly consists of data integration. (Source:

Foundations of SQL Server 2005 Business Intelligence, Lynn Langit)

Approaches to Integration

In this section, we apply an architectural perspective to give an overview of the different ways to

address the integration problem. The presented classification is based on [Dittrich and Jonscher,

1999] and distinguishes integration approaches according to the level of abstraction where

integration is performed.

7

Figure 2: General Integration Approaches on Different Architectural Levels

Manual Integration

Here, users directly interact with all relevant information systems and manually integrate selected

data. That is, users have to deal with different user interfaces and query languages. Additionally,

users need to have detailed knowledge on location, logical data representation, and data

semantics.

Common User Interface

In this case, the user is supplied with a common user interface (e.g., a web browser) that provides

a uniform look and feel. Data from relevant information systems is still separately presented so

that homogenization and integration of data yet has to be done by the users (for instance, as in

search engines).

Integration by Applications

This approach uses integration applications that access various data sources and return

integrated results to the user. This solution is practical for a small number of component systems.

However, applications become increasingly fat as the number of system interfaces and data

formats to homogenize and integrate grows.

Integration by Middleware

Middleware provides reusable functionality that is generally used to solve dedicated aspects of

the integration problem, e.g., as done by SQL-middleware. While applications are relieved from

implementing common integration functionality, integration efforts are still needed in

applications. Additionally, different middleware tools usually have to be combined to build

integrated systems.

8

Uniform Data Access

In this case, a logical integration of data is accomplished at the data access level. Global

applications are provided with a unified global view of physically distributed data, though only

virtual data is available on this level. However, global provision of physically integrated data can

be time-consuming since data access, homogenization, and integration have to be done at

runtime.

Common Data Storage

Here, physical data integration is performed by transferring data to a new data storage; local

sources can either be retired or remain operational. In general, physical data integration provides

fast data access. However, if local data sources are retired, applications that access them have to

be migrated to the new data storage as well. In case local data sources remain operational,

periodical refreshing of the common data storage needs to be considered.

In practice, concrete integration solutions are realized based on the presented six general

integration approaches. Important examples include:

Mediated query systems represent a uniform data access solution by providing a single point for

read-only querying access to various data sources. A mediator [Wiederhold, 1992] that contains a

global query processor is employed to send subqueries to local data sources; returned local

query results are then combined.

Portals as another form of uniform data access are personalized doorways to the internet or

intranet where each user is provided with information tailored to his information needs. Usually,

web mining is applied to determine user-profiles by click-stream analysis; that way, information

the user might be interested in can be retrieved and presented.

Data warehouses realize a common data storage approach to integration. Data from several

operational sources (on-line transaction processing systems, OLTP) are extracted, transformed,

and loaded (ETL) into a data warehouse. Then, analysis, such as online analytical processing

(OLAP), can be performed on cubes of integrated and aggregated data.

Operational data stores are a second example of common data storage. Here, a ―warehouse

with fresh data‖ is built by immediately propagating updates in local data sources to the data

store. Thus, up-to-date integrated data is available for decision support. Unlike in data

warehouses, data is neither cleansed nor aggregated nor are data histories supported.

Federated database systems (FDBMS) achieve a uniform data access solution by logically

integrating data from underlying local DBMS. Federated database systems are fully-fledged

DBMS; that is, they implement their own data model, support global queries, global transactions,

and global access control. Usually, the five-level reference architecture by [Sheth and Larson,

1990] is employed for building FDBMS.

Workflow management systems (WFMS) allow to implement business processes where each

single step is executed by a different application or user. Generally, WFMS support modelling,

9

execution, and maintenance of processes that are comprised of interactions between applications

and human users. WFMS represent an integration-by-application approach.

Integration by web services performs integration through software components (i.e., web

services) that support machine-to-machine interaction over a network by XML-based messages

that are conveyed by internet protocols. Depending on their offered integration functionality,

web services either represent a uniform data access approach or a common data access interface

for later manual or application-based integration.

Peer-to-peer (P2P) integration is a decentralized approach to integration between distributed,

autonomous peers where data can be mutually shared and integrated. P2P integration

constitutes, depending on the provided integration functionality, either a uniform data access

approach or a data access interface for subsequent manual or application-based integration.

Data integration is responsible for moving, cleansing and transforming set-based data—often

very large data sets—from source(s) into the Production data area and then into the

Consumption data area as shown in Figure 3.

Figure 3: The role of data integration in a data warehouse project

Requirements for the data integration

The requirements for the data integration component include:

 Trust – Business consumers must be able to trust the results obtained from the data

warehouse.

 One version of the truth – Consolidating heterogeneous sources into an integrated view

supports business consumers‘ need for an enterprise-level view of data.

 Current and historical views of data – The ability to provide both a historical view of

data as well as a recent view supports key business consumer activities such as trend

analysis and predictive analysis.

 Availability – Data integration processes must not interfere with business consumers‘

ability to get results from the data warehouse.

10

Challenges for the data integration

The challenges for the data integration team in support of these requirements include:

 Data quality – The data integration team must promote data quality to a first-class

citizen.

 Transparency and auditability – Even high-quality results will be questioned by business

consumers. Providing complete transparency into how the data results were produced

will be necessary to relieve business consumers‘ concerns around data quality.

 Tracking history – The ability to correctly report results at a particular period in time is

an on-going challenge, particularly when there are adjustments to historical data.

 Reducing processing times – Efficiently processing very large volumes of data within

ever shortening processing windows is an on-going challenge for the data integration

team.

Data Integration Patterns

The industry has several well-known data integration patterns to meet these requirements and

solve these challenges, and it‘s important for data warehouse practitioners to use the correct

pattern for their implementation.

Figure 4: Positions the different integration options that are available.

The two axes in Figure 3 represent the main characteristics for classifying an

integration pattern:

 Timing – Data integration can be a real-time operation or can occur on a scheduled

basis.

 Volumes – Data integration can process one record at a time or data sets.

Integration patterns

The primary integration patterns are:

 Enterprise Information Integration (EII) – This pattern loosely couples multiple data

stores by creating a semantic layer above the data stores and using industry-

standard APIs such as ODBC, OLE-DB, and JDBC to access the data in real time.

11

 Enterprise Application Integration (EAI) – This pattern supports business processes

and workflows that span multiple application systems. It typically works on a

message-/event-based model and is not data-centric (i.e., it is parameter-based and

does not pass more than one “record” at a time).

 Extract, Transform, and Load (ETL) – This pattern extracts data from sources,

transforms the data in memory and then loads it into a destination.

 Extract, Load, and Transform (ELT) – This pattern first extracts data from sources

and loads it into a relational database. The transformation is then performed within

the relational database and not in memory.

 Replication – This is a relational database feature that detects changed records in a

source and pushes the changed records to a destination or destinations. The

destination is typically a mirror of the source, meaning that the data is not

transformed on the way from source to destination.

Overnight Data Integration patterns

Data integration, which frequently deals with very large data sets, has traditionally

been scheduled to run on a nightly basis during off hours. In this scenario, the

following has held true for the different patterns:

 EII is not commonly used in data warehouses because of performance issues. The

size and data volumes of data warehouses prohibit the real-time federation of

diverse data stores, which is the technique employed by the EII pattern.

 EAI is not used in data warehouses because the volume of the data sets results in

poor performance for message-/event-based applications.

 ETL is the most widely used integration pattern for data warehouses today.

 ELT is seen mostly in legacy data warehouse implementations and in very large data

warehouse implementations where the data volumes exceed the memory required

by the ETL pattern.

 Replication, used to extract data from sources, is used in conjunction with an ETL or

ELT pattern for some data warehouse implementations.

o The decision to use replication can be based on a variety of factors, including

the lack of a last changed column or when direct access to source data is not

allowed.

Which Pattern Should I Use?

12

Typically, a data warehouse should use either ETL or ELT to meet its data integration

needs. The costs of maintaining replication, especially when re-synchronizing the

replication process is required, makes it a less attractive alternative for extracting

data from sources. However, hybrid approaches such as ETL/ELT combined with

source system net-change detection capabilities may be required for near real-time

data.

Data Integration Paradigms (ETL and ELT)

ETL products populate one or more destinations with data obtained from one or

more sources. The simplest pattern is where one source loads one destination, as

illustrated in Figure 4.

Figure 5: Simple ETL data flow

Processing steps in ETL data flow

The processing steps are as follows:

1. The ETL tool retrieves data sets from the source, using SQL for relational sources or

another interface for file sources.

2. The data set enters the data pipeline, which applies transformations to the data one

record at a time. Intermediate data results are stored in memory.

3. The transformed data is then persisted into the destination.

Advantages for ETL data flow

Advantages to this process are that:

13

 Procedural programming constructs support complex transformations.

 Storing intermediate results in memory is faster than persisting to disk.

 Inserts are efficiently processed using bulk-insert techniques.

Disadvantages for ETL data flow

However, the disadvantages include the following:

 Very large data sets could overwhelm the memory available to the data pipeline.

 Updates are more efficient using set-based processing—meaning using one SQL

UPDATE statement for all records, not one UPDATE per each record.

Figure 5 shows an example of an SQL Server Integration Services (SSIS) data flow that performs

transformation processes (joining, grouping, calculating metrics, and so on) in the pipeline. This

data flow has the advantage of leveraging the memory resources of memory is limited or the

data set needs to entirely fit in memory, the processes will the server and can perform many of

the transformation tasks in parallel. However, when slow down.

Figure 6: SSIS data flow example

Extract, Load, and Transform—also moves data from sources to destinations. ELT relies on the

relational engine for its transformations. Figure 6 shows a simple example of ELT processing.

14

Figure 7: Simple ELT data flow

Processing steps in the ELT data flow

The processing steps in the ELT data flow are as follows:

1. Source data is loaded either directly into the destination or into an intermediate

working table when more complex processing is required. Note that transformations

can be implemented within the source SQL Select statement.

2. Transformations are optionally applied using the SQL Update command. More

complex transformations may require multiple Updates for one table.

3. Transformations and Lookups are implemented within the SQL Insert…Select

statement that loads the destination from the working area.

4. Updates for complex transformations and consolidations are then applied to the

destination.

Advantages of ELT Data Flow

The advantages of this process include the following:

 The power of the relational database system can be utilized for very large data sets.

Although, note that this processing will impact other activity within the relational

database.

 SQL is a very mature language that translates into a greater pool of developers than

ETL tools would.

15

Disadvantages of ELT Data Flow

However, you need to consider these disadvantages:

 As just noted, ELT places a greater load on the relational database system.

 You will also see more disk activity because all intermediate results are stored within

a table, not memory.

 Implementing transformations and consolidations using one or more SQL Updates is

more inefficient than the ETL equivalents, which make only one pass through the

data and apply the changes to the destination using a single SQL statement rather

than multiple ones.

 Complex transformations can exceed the capabilities of the SQL Insert and Updates

statements because transformations occur at the record level not the data set level.

When this occurs, SQL cursors are used to iterate over the data set, which results in

decreased performance and hard-to-maintain SQL code.

 For a given transformation, the processes applied are often serialized in nature and

add to the overall processing time.

Figure 7 shows the SSIS control flow used in more of an ELT-type operation. You can

identify ELT-type operations by their multiple linear tasks, which perform either

Execute SQL Tasks or straight data loads using a few working tables.

Figure 8: SSIS control flow ELT process

16

Which Should I Use for My Implementation?

The decision about whether to use an ETL or ELT pattern for a SQL Server data

integration solution is based on the following considerations.

Use ETL when…

 Working with flat files and non-relational sources. ETL tools have readers which can

access non-relational sources like flat files and XML files. ELT tools leverage the SQL

language which requires that the data be first loaded into a relational database.

 This is a new data integration project or the current first-generation implementation

is hard to manage and maintain. The visual workflows for tasks and data flows make

the process easier to understand by non-developers.

 The transformations are complex. ETL’s ability to apply complex transformations and

business rules far exceeds the abilities of one set-based SQL statement. Many legacy

ELT solutions have become unmanageable over time because of cursor-based logic

and multiple Update operations used to implement complex transformations.

Use ELT when…

 The data volumes being processed are very large. Huge data sets may exhaust the

available memory for an ETL approach. Remember that the ETL data pipeline uses in-

memory buffers to hold intermediate data results.

 The source and destination data is on the same server and the transformations are

very simple. A SQL-centric ELT solution is a reasonable choice when the current

database development team is not trained on SSIS. But keep in mind that complex

transformations can easily translate into poorly performing, unmaintainable data

integration code.

Development Plan

Extracting the Data

There are two ways the data can be extracted from external systems. The car dealerships can

offer a web service to query their point of sale of dealer management database. The second

17

option is that the dealerships, car manufactures, and other vehicle databases daily offer a

database dump of the database. The option is preferred but however is not always possible for

dealerships to create a web services to access their system due to the additional cost of

development.

1. Ad-hoc Web Service

When a sales person in the car dealership makes a sale the transaction is stored in the POS. These

kinds of changes need to be incorporated in the DPMS as soon as it happens. A solution to this

is pulling the data from the external system via AD Hoc web service. In this approach the

underlying P.O.S (Point of Sales) system will have a web service which returns data. For example

when the user enter a registration number or VIN number the system will automatically trigger a

web-service that will send a request to the external POS system, This query will then run on the

systems database thus providing the user latest information. Which in turn will respond with

corresponding vehicle detail, this data can then is used to populate the rest of the fields.

18

2. Using Data Dump

The second means of gathering data is through an overnight process where the external system

in our case Auto link, which a data interface tool used by dealer to upload mass vehicle

information to databases, this is same system currently being used by Trade me. The plan is use

the data dump created by the vehicle database, Auto link to update our database. This means

that all the latest vehicle details can be imported to into our system automatically without any

user input; this eliminates any human error or data inaccuracy. In this case when the user enters

an identifier the vehicle details will be looked up within the local data store and populate the

remaining fields.

Figure 8 shows how the data from the different data sources will be extracted into the

application.

Figure 9: DPMS Data Integration Architecture

19

Import Interface Design

Design & Implement the Visual Interface

For the importing the data, I created a design of how the interface should look. The

interface will allow the user to specify whether they want to import or manually enter

the, Depending on the user configuration the system will use one of the two ways

described above will used to retrieve the vehicle details.

Figure 10: Import Interface: First two mock screens

Use Case 1: Creating and Editing Sales / Finance Entries

The user will create / Edit Entry they will be prompted with a popup, giving them the option

whether to import data; the user will have the option to click cancel. If they choose to import

(and most cases this should be the case), the user will go through a small wizard which will allow

them to pick the entries they want and from where to pick the data from.

The user will pick the data sources they want to search from; they may choose either to search

entries from e.g. Auto Link or POS or both.

Depending on what data sources they choose the identifiers‘ fields will be displayed*. The

identifiers entered will be passed to POS web Service & Auto Link and cumulative results will be

returned in a grid.

20

Figure 11: Import Interface design screens

1. From the tree the user will select one entry, the user has the option to select the whole

entry or select sub entries that relate to the entry.(maybe even individual fields as a future

improvement)

a. The grid shows the data sources that returned matches to the query. Each data

source has sub-entries that match the query. The user can only select one sub-

entry, from the grid. For example, the user may only select vehicle information

coming from Auto Link or the Point of Sales system. The user will not be allowed

to select a vehicle entry coming from Point of Sales if a vehicle entry from Auto

Link is already selected. Once the user is satisfied with their data import selection,

they must click ‗Import‘.

2. In this screen they will get a final chance to go back and make any changes, before all the

data is imported into the log entry Form.

3. If the import is successful, the users will be shown the screen on the right. The Screen on

the right will appear as popup that disappears automatically after a second or so.

4. The selected entries will be imported into our current interface (i.e. fields on user screen

will be populated according to imported data) where it can be further edited and saved.

Only those input fields which are not disabled/read-only can be imported. Other values

are ignored.

21

Technologies

Before I can start building a solution to this problem, it was vital that I understood the existing

programming model used in the application. The early days of this project involved weeks of

learning and research into the working of a web application. It was important that to understand

the existing design patterns and structures in-place before I could start programming. In this

section I will briefly go over some of the key design patterns, frameworks and plugins that I will

encounter during my development.

MVC

DPMS is a web application build using Microsoft ASP.Net Framework. The application itself is

based around the MVC Programming model. Microsoft‘s MVC architecture separates the

modelling of the domain, the presentation, and actions based on user input.

Model: The model manages the behaviour and data of the application domain, responds to

requests for information about its state (usually from the view),

and responds to instructions to change state (usually from the

controller).

View: The view manages the display of information.

Controller: The controller interprets the mouse and keyboard

inputs from the user, informing the model and/or the view to

change as appropriate.

MVVM

Developing the user interface of a professional software application is not easy. It can be a murky

blend of data, interaction design, visual design, connectivity, security, internationalization,

validation, and a bit of luck. When designing the user interface, I had to keep in mind the

underlying system was not exposed. Researching online I found various design patterns that

claim to be the solution to maintain the code within your program. In the end I decided to follow

the Model View View-Model (MVVM) design pattern as it natural add-on to the MVC framework.

The main purpose of using this design pattern is to add structure to the code, to maintain the

distinction between business objects and graphical user interface code.

The view model is a ‗model of the view‘ meaning that it encapsulates the presentation logic and

data for the view. The properties and commands that the view model provides define the

functionality to be offered by the UI, but the view determines how that functionality is to be

rendered. View models are responsible for coordinating the view's interaction with any model

22

classes that are required. In DPMS there is a one-to many-relationship between the view model

and the model classes. The view model is used to convert or manipulate model data so that it can

be easily consumed by the view. Basically the view is a class that contains properties which can

directly be displayed in view. The following is code the code snippet of the import view model.

ORM

The foundations of a data driven web application is database. Nhibernate is great Object-relation

mapper (ORM) is designed to virtually wrap around the relational database. If you look at the

name (ORM), it basically translates into: mapping relation tables to an object-orientated domain

model. In DPMS each of the database tables are mapped (one-to-one) to code files using a

mapping file. Using Nhibernate allows you to work with the database data as objects and

program in the object-orientated fashion, which is familiar to almost all programmers.

All relational databases use data types for each of the fields, for example: int, small int, blob, char

etc. Sometimes you have to convert the data types on the fly to properly add a record to the

database. A good ORM such as NHibernate takes care of these details for you.

Traditional techniques of exchange between an object-oriented language and a relational

database required you to declare a connection to the database ever time to want to access the

database also you would need to be mindful to close the database session. In contrast

Nhibernate abstracts away from all of this rote code and enables you to write actual business

logic code faster and easier that before.

Using an ORM such Nhibernate create a consistent code all of the queries written will be in C#,

therefore there is no SQL code to add complexity. This makes it easier to write and debug the

program, especially if more than one programmer is on the job.

Security is always an issue in developing web applications, using an ORM shields the application

from SQL injection attacks since the framework will be filtering the data.

23

Repositories

The Idea of repositories was new to me before I started work on the project. In enterprise

application such as DPMS the repository pattern is a common construct to avoid duplication of

data access logic throughout our application. The sole purpose of the repository is to hide the

details of accessing the data. We can easily query the repository for data objects, without having

to know how to provide things like a connection string. The repository behaves like a freely

available in-memory data collection to which we can add, delete and update objects.

The Repository pattern adds a separation layer between the data and domain layers of an

application. It also makes the data access parts of an application better testable.

The example below shows typical repository class using the Nhibernate ORM:

Figure 12: Snippet of Import Repository

The implementation of the repository is pretty straightforward. The class inherits from

NHibernateGenricRepository, and the object type parameter is queried upon using lambda

queries. The generic repository contains all the methods that can apply to any object such as

Insert, Delete, GetById and GetAll.

24

JQuery

JQuery is a JavaScript framework, which purpose is to make it much easier to use JavaScript on

your website. You could also describe jQuery as an abstraction layer, since it takes a lot of the

functionality that you would have to write many lines of JavaScript to accomplish and wraps it

into functions that you can call with a single line of code. JQuery does not replace JavaScript, and

while it does offer some syntactical shortcuts, the code you write when you use jQuery is still

JavaScript code.

JQuery tries to simplify a lot of the complicated things from JavaScript, like AJAX calls

and DOM manipulation, so that you may do these things without knowing a lot about

JavaScript.

There are a bunch of other JavaScript frameworks out there, but as of right now, jQuery seems to

be the most popular and also the most extendable, proved by the fact that you can find jQuery

plugins for almost any task out there.

Implementation

To implement this external data import functionality feature there are a number of details I had

to take under consideration. This section is a documentation of the thought process that led me

the final solution. I will start by describe the steps I have taken to build the 3-tier application,

starting from the data layer moving to the business logic and finally the presentation layer.

Project Structure

In my research and discovery phase I learn how MVC application is structured, and how different

design patterns work together. Analysis of the existing DPMS project structure gave me clues as

to how my solution will be laid out. The following diagram describes the overall structure of my

implementation.

25

From this diagram we see the barebones of the architecture with still a lot of the class hidden for

confidentiality. We can see that the web project depends on the libraries in the Lib project. The

lib project will hold all the core application business logic. While the web project will be

responsible for display the data to the browser. The import service library shown in the diagram

contains the import interface as well as the concrete class implementations. The library also holds

the supporting class that allow the domain object to be converted to view models.

Domain Model

To integrate external data into DPMS we need to convert the ‗raw‘ data returned from the web

service to domain object objects. The following is a snippet of existing DPMS Domain Structure:

Figure 13: Skeleton LogEntry Domain Model

One of the requirements of the interface was to allow sub sections of a Log entry to be imported

individually. From the figure 13 we can see that a ‗LogEntry‘ consists of several other domain

objects. To enable the select of sub section a view model structure was required.

External Import Data Source

To store the data about each external import data source, the following domain model structure

was used to store information about the external data sources.

26

Figure 14: External Import source table structure

The diagram shows two table associations ExternDataSourceDealerMap and

SystemTenantImportSourceMap. These objects provide a relation between

ExternalLogImportSource and the Dealer and used when permission checking is done.

The next step is to do implement the interface that will allow multiple data sources to be

associated to the system tenant. A common interface for retrieving all associated data sources for

a user is required. The following class diagram outlines how each external Import source can be

easily added.

Figure 15: Common Interface to access the Import sources

27

The above ILogImportService interface is used to access methods of each of the external

import sources.

Each external import source that uses a web service to pull data, requires a way to parse the data

into local domain object. In my current version of the application the PosImportService class

receives the data returned from the web service as a response. The response returns a quote data

object. In the GetSearchResults method, the dataset goes through a forloop in which each of the

objects is converted to object in the DPMS domain model. The following code shows how the

data in each result returned is converted.

From the code above we see that how the ‗raw‘ data string of vehicle make is converted into a

VehicleMake object. To create a VehicleMake object the local database is queried via the

repository (VehicleMakeRepo). In a similar way other raw data such as sale price, interest rate,

customer name, etc can be converted into SalesLogEntry, FinanceLogEntry, and Customer

domain objects. Once the response from the web service is converted to a domain object it is

returned to the ImportExternalLogEntryUiService class where it converted to a view for

display.

UI service class
The ImportExternalLogEntryUiService class in an extension of the controller, when a GET

request to load the import window is made the method call is handled by the controller. When

the controller is called a method in the UI service class is called where all the ‗heavy lifting‘ is

done.

To load the view of the import interface, permission checking is done to verify whether a user has

any import sources configured. For each of the configured import sources the search parameter

offered are collated and returned.

After the user fills the search form, the data is posted back to the server. The following snippet of

code shows how the interface is used to combine the search results from each data source.

From the code snippet we see that the search parameters are passed into the

‗GetSearchResults’ method of the interface, where the contrecte implementation is carried

out in each of the import source classes.

28

In the ImportExternalLogEntryUiService class, the method ‗returns a list of

LogEntryViewModels based on the selected view models.

Displaying the Data

The user interface was created in the Razor view engine. The razor view engine allowed me to

quickly integrate the server code with html mark-up, while writing the minimum amount of code.

Input Validation

In a web application a user can practically post kind of input to the server. Not validating input

can lead to system crashes, malicious data manipulation, and even database corruption.

A requirement of the interface was when a user imports a log entry, the user may select one of

each sub entry to import. The following java script code demonstrates how I implemented this

client side validation.

29

Outcome
Overall, I think this project has been a successful one. I have not been able to complete the

import interface but I have also managed to complete using a robust and scalable solution.

Figure 16: Import search form

30

Figure 17: Import search results screen

Future Work

By completing my project, I have laid the foundations to Import data from other I.T. systems.

Whether data is going to be imported via a web service or queried by reference tables, the

IExternalImportInterface provides as central way to access all the data sources. To enhance

the import functionality there are few improvements that can be made.

Currently, the vehicle data that is received from the web service gives a string which then search

in the DPMS data by exactly matching the vehicle name or vehicle to model. If the data is stored

in a different for example Merc instead for Mercedes, then the system would fail to return this

vehicle. Although this is expected behaviour, as it meets the base requirements of the task. In

future it would be nice to be able to identify the vehicle even though there minor spelling

mistakes exists or data is expressed differently. A solution to this issue could be resolved by

31

setting up an intermediary table which holds a mapping between the commonly misspelled or

different formats of expressing the same vehicle data. The mapping would point to the actual

vehicle record stored in the database and return the appropriate vehicle object.

In the future, another ‗nice to have‘ would to allow the user to import data only for specific fields.

This can easily be implemented in the user interface by adding another level to the treeview

structure. Aslo another view model class would be required to hold the data foreach of the select

fields.

Achievements
This project given has given great insight the field of software development. I have not only

gained practical real world experience but have also gained valuable technical knowledge.

Through working with the company, I got an insight into the software development life cycle,

learnt how to document and communicated my idea with peers.

Working with a company has taught me about discipline and planning.

Documentation

An important skill I learnt during my time working with the company was the need for and

importance of documentation. Documentation not only allowed me to organise my thought but

also aided my communication with my industrial mentor. Documenting my implementation as I

have done in this report had helped me stick to the plan. The importance for documentation

goes far beyond my personal benefits. This documentation contains information on the inner

workings of implemented solution. This information makes it possible to reproduce the software

or adapt it to maintenance. Although my documentation contributions had been small in the

grand scheme of things, this kind of documentation will be built on and can worth millions to a

company in the future.

32

Conclusion
Overall, my project has been a success. I have managed to complete my project and have gained

a great insight about the challenges face by IT companies with regards to data integration. I‘ve

learn techniques to solve one of the most costly problems face by IT companies. Working with

the development team has taught me the importance of communication to exchange ideas and

refine the understanding of the problem space. One of the most important technical skills I

learnt is the idea of design patterns. Before working with the company I was not familiar with

patterns such as MVC, repositories, service locators etc. Working in the field has exposed me to

how developers solve the problems in the real world.

33

Work Done
Date Work

Week 1 Chose the project I will be working on this year

Week 2 This week I met with the company, we discussed about the company background, and a brief overview

of the project

Week 3 Discussed the requirements of the project, and more details of the system were discussed

Week 4 The week I had my introductory presentation for BTech, which I discussed my project

Week 5 I worked the specifications document that outlined the scope and finalised the requirements of the

project

Week 6 This week I was working the proposal the import interface and research some possible solutions for

integration of data

Week 7 Been working on the proposal and more research was done with regards to MVC.NET

Week 8 This week I have been working on use cases

Week 9 I have started giving thought the UML diagrams required for the project

Week 10 Been working on the User interface designs for the import interface

Week 11 Started Implementing the Class diagrams & began work on the interface for the web service

Week 12 Working on Developing the interface and classes

Week 13 Conducted research on approaches and strategies to data Integration.

Week 14 Start working with NHibernate and creating domain model objects. Began to get familiar with MVC

framework and Jquery

Week 15 Created the data tables & Domain Classes with the corresponding Nhibernate mapping files. Start work

on the repository classes and methods

Week 16 Started work on the Import controller and the popup window. Wrote code to display a simple form

Week 17 Wrote the business rules to associate the configures import sources to the users, and limit access to the

import interface based on user permissions

Week 18 Started implementing the ILogImportService class and worked on retrieving data from the local reference

tables.

Week 19 Got the Wsdl for the POS web service. Connected to the web service and started the converting the

returned to fit DPMS domain model.

Week 20 Worked on algorithm that will allow the domain object to be converted to view models uniformly

Week 21 Worked on the displaying the data on the view using Telerik UI controls

Week 22 Using Jquery wrote scripts to allow the user to select the entries that need to be imported.

Week 23 Worked the client side validation of user selection and form input.

Week 24 Conducted testing and User interface clean-up.

Week 25 Continued fixed bugs found in testing; also added finishing touches to the project.

Week 26 Conducted research on the scalability of the Web services and data Integration for large data volumes.

Week 27 Started working on Final presentation and Project report

34

Bibliography
(n.d.).

A Flexible Model for Data Integration. (n.d.). Retrieved from http://msdn.microsoft.com/en-

us/library/bb245674.aspx

Enterprise Information Integration: A New Definition. (n.d.). Retrieved from

http://www.information-management.com/news/1009669-1.html

Hophe, G. (2002). Enterprise Integration Patterns.

Ribeiro, R. (n.d.). How to Integrate data from different sources.

Understanding Enterprise Application Integration - The Benefits of ESB for EAI. (n.d.). Retrieved

from http://www.mulesoft.org/enterprise-application-integration-eai-and-esb

Yin, R. (n.d.). An Effecient Data Service Layer.

